SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Lu-An Tang, Bin Cui, Hong-Yan Li, Gao-Shan Miao, Dong-Qing Yang, Xin-Biao Zhou. PGG: An Online Pattern Based Approach for Stream Variation Management[J]. Journal of Computer Science and Technology, 2008, 23(4): 497-515. |
[1] | Papadimitriou S, Yu P S. Optimal multi-scale patterns in time series streams. In {\it Proc. the 2006 ACM SIGMOD International Conference on Management of Data}, Chicago, IL, USA, June 27--29, 2006, pp.647--658. |
[2] |
} Aggarwal C C, Han J, Wang J, Yu P S. A framework for projected clustering of high dimensional data streams. In {\it Proc. the Thirtieth International Conference on Very Large Data Bases}, Toronto, Canada, August 31--September 3, 2004, Vol.30, pp.852--863.
|
[3] |
} Wang H, Fan W, Yu P S, Han J. Mining concept-drifting data streams using ensemble classifiers. In {\it Proc. the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, KDD'03, Washington D C, August 24--27, 2003, pp.226--235.
|
[4] |
} Babcock B, Datar M, Motwani R, O'Callaghan L. Maintaining variance and k-medians over data stream windows. In {\it Proc. the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS'03}, San Diego, California, June 9--11, 2003, pp.234--243.
|
[5] |
} Wang H, Pei J, Yu P S. Online mining data streams: Problems, applications and progress. In {\it Proc. the 21st International Conference on Data Engineering, ICDE'05}, Tokyo, Japan, April 5--8, 2005.
|
[6] |
} Keogh E, Lin J, Fu A. HOT SAX: Efficiently finding the most unusual time series subsequence. In {\it Proc. Fifth IEEE International Conference on Data Mining}, Houston, Texas, USA, Nov. 2005, pp.27--30.
|
[7] |
} Keogh E, Lonardi S, Chiu B. Finding surprising patterns in a time series database in linear time and space. In {\it Proc. the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, Edmonton, Alberta, Canada, July 23--26, 2002, pp.550--556.
|
[8] |
} Wu H, Salzberg B, Zhang D. Online event-driven subsequence matching over financial data streams. In {\it Proc. the 2004 ACM SIGMOD International Conference on Management of Data}, Paris, France, June 13--18, 2004, pp.23--34.
|
[9] |
} Varon Joseph, Marik PE. Clinical information systems and the electronic medical record in the intensive care unit. {\it Current Option in Critical Care}, 2002, 8(6): 616--624.
|
[10] |
} Zhou X, Miao G, Li H, Tang L, Wei X. PEDS-VM: A variation management prototype for pattern evolving data streams. In {\it Proc. the Ninth International Conference on Web-Age Information Management, WAIM 08}, Zhangjiajie, China, July 20--22, 2008. (To appear)
|
[11] |
} Tang L, Cui B, Li H, Miao G, Yang D, Zhou X. Effective variation management for pseudo periodical streams. In {\it Proc. the 2007 ACM SIGMOD International Conference on Management of Data}, %SIGMOD'07, Beijing, China, June 11--14, 2007, pp.257--268.
|
[12] |
} Papadimitriou S, Sun J, Faloutsos C. Streaming pattern discovery in multiple time-series. In {\it Proc. the 31st International Conference on Very Large Data Bases}, Trondheim, Norway, August 30 -- September 02, 2005, pp.697--708.
|
[13] |
} Babu S, Widom J. Continuous queries over data streams. {\it SIGMOD Rec.}, Sept. 2001, 30(3): 109--120.
|
[14] |
} Abadi D, Carney D, Cetintemel U, Cherniack M, Convey C, Lee S, Stonebraker M, Tatbul N, Zdonik S. Aurora: A new model and architecture for data stream management. {\it The VLDB Journal}, August 2003, 12(2): 120--139.
|
[15] |
} Cortes C, Fisher K, Pregibon D, Rogers A. Hancock: A language for extracting signatures from data streams. In {\it Proc. the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, Boston, Massachusetts, United States, August 20--23, 2000, pp.9--17.
|
[16] |
} Chandrasekaran S, Cooper O, Deshpande A, Franklin M J, Hellerstein J M, Hong W, Krishnamurthy S, Madden S R, Reiss F, Shah M A. TelegraphCQ: Continuous dataflow processing. In {\it Proc. the 2003 ACM SIGMOD International Conference on Management of Data}, %SIGMOD'03, San Diego, California, June 9--12, 2003, pp.668--668.
|
[17] |
} Sullivan M. Tribeca: A stream database manager for network traffic analysis. In {\it Proc. the 22nd International Conference on Very Large Data Bases}, San Francisco, CA, September 3--6, 1996, p.594.
|
[18] |
} Yao Y, Gehrke J. The cougar approach to in-network query processing in sensor networks. {\it SIGMOD Rec.}, Sept. 2002, 31(3): 9--18.
|
[19] |
} Cormode G, Datar M, Indyk P, Muthukrishnan S. Comparing data streams using Hamming norms (how to zero in). In {\it Proc. the 28th International Conference on Very Large Data Bases}, Hong Kong, China, August 20--23, 2002, pp.335--345.
|
[20] |
} Datar M, Gionis A, Indyk P, Motwani R. Maintaining stream statistics over sliding windows. In {\it Proc. the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms}, San Francisco, California, January 6--8, 2002, pp.635--644.
|
[21] |
} Hu Z, Li H, Qiu B, Tang L, Fan Y, Liu H, Gao J, Zhou X. Using control theory to guide load shedding in medical data stream management system. In {\it Proc. the 10th Asian Computing Science Conference, Advances in Computer Science, 2005}, Kunming, China, {\it LNCS} 3818, pp.236--248.
|
[22] |
} Ganguly S, Garofalakis M, Rastogi R. Processing set expressions over continuous update streams. In {\it Proc. the 2003 ACM SIGMOD International Conference on Management of Data}, %SIGMOD'03, San Diego, California, June 9--12, 2003, pp.265--276.
|
[23] |
} David J Fraenkel, Melleesa Cowie, Peter Daley. Quality benefits of an intensive care clinical information system. {\it Crit. Care Medi.}, 2003, 31: 120--125.
|
[24] |
} Axel Junger, Achim Michel {\it et al}. Evaluation of the suitability of a patient data management system for ICUs on a general ward. {\it International Journal of Medical Informatics}, 2001, 64: 57--66.
|
[25] |
} Liu Y B, Cai J R, Yin J, Fu W A. Clustering text data streams. {\it Journal of Computer Science and Technology}, Jan. 2008, 23(1): 112--128.
|
[26] |
} Hu X G, Li P P, Wu X D, Wu G Q. A semi-random multiple decision-tree algorithm for mining data streams. {\it Journal of Computer Science and Technology}, Sept. 2007, 22(5): 711--724.
|
[27] |
} Chong Z H, Yu J X, Zhang Z J, Lin X M, Wang W, Zhou A Y. Efficient computation of k-medians over data streams under memory constraints. {\it Journal of Computer Science and Technology}, Mar. 2006, 21(2): 284--296.
|
[28] |
} Chang J H, Lee W S. Effect of count estimation in finding frequent itemsets over online transactional data streams. {\it Journal of Computer Science and Technology}, Jan. 2005, 20(1): 63--69.
|
[29] |
} Cai Y D, Clutter D, Pape G, Han J, Welge M, Auvil L. MAIDS: Mining alarming incidents from data streams. In {\it Proc. the 2004 ACM SIGMOD International Conference on Management of Data}, Paris, France, June 13--18, 2004, %SIGMOD'04. pp.919--920.
|
[30] |
} Teng W, Chen M, Yu P S. A regression-based temporal pattern mining scheme for data streams. In {\it Proc. the 29th International Conference on Very Large Data Bases}, Berlin, Germany, September 09--12, 2003, pp.93--104.
|
[31] |
} Zhu Y, Shasha D. Efficient elastic burst detection in data streams. In {\it Proc. the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, Washington D C, August 24--27, 2003, pp.336--345.
|
[32] |
} Ma J, Perkins S. Online novelty detection on temporal sequences. In {\it Proc. the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, Washington D C, August 24--27, 2003, pp.613--618.
|
[33] |
} Aggarwal C C. On abnormality detection in spuriously populated data streams. In {\it Proc. SIAM International Conference on Data Mining}, Newport Beach, CA, USA, 2005.
|
[34] |
} Lin J, Keogh E, Lonardi S, Chiu B. A symbolic representation of time series, with implications for streaming algorithms. In {\it Proc. the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery}, San Diego, California, June 13, 2003, pp.2--11.
|
[35] |
} Gilbert A C, Kotidis Y, Muthukrishnan S {\it et al}. One-Pass Wavelet Decompositions of Data Streams. {\it IEEE Trans. Knowl. and Data Eng.}, Mar. 2003, 15(3): 541--554.
|
[36] |
} Papadimitriou S, Brockwell A, Faloutsos C. Adaptive, unsupervised stream mining. {\it The VLDB Journal}, Sept. 2004, 13(3): 222--239.
|
[37] |
} Gao L, Wang X. Continuous similarity-based queries on streaming time series. {\it IEEE Trans. Knowl. Data Eng.}, Oct. 2005, 17(10): 1320--1332.
|
[38] |
} Wu H, Salzberg B, Zhang D. Online event-driven subsequence matching over financial data streams. In {\it Proc. the 2004 ACM SIGMOD International Conference on Management of Data}, Paris, France, June 13--18, 2004, pp.23--34.
|
[39] |
} Wu H, Sharp G, Salzberg B, Kaeli D, Shirato H, Jiang S. A finite state model for respiratory motion analysis in image guided radiation therapy. {\it Physics in Medicine and Biology (PMB)}, 2004, 49(23): 5357--5372.
|
[40] |
} Wu H, Salzberg B, Sharp G C, Jiang S B, Shirato H, Kaeli D. Subsequence matching on structured time series data. In {\it Proc. the 2005 ACM SIGMOD International Conference on Management of Data}, Baltimore, Maryland, June 14--16, 2005, pp.682--693.
|
[41] |
} Aggarwal C C. A framework for diagnosing changes in evolving data streams. In {\it Proc. the 2003 ACM SIGMOD International Conference on Management of Data}, San Diego, California, June 09--12, 2003, pp.575--586.
|
[42] |
} Wang H, Pei J. A random method for quantifying changing distributions in data streams. In {\it Proc. the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)}, Porto, Portugal, October 2005, pp.684--691.
|
[43] |
} Keogh E J, Chu S, Hart D, Pazzani M J. An online algorithm for segmenting time series. In {\it Proc. the 2001 IEEE International Conference on Data Mining}, Cercone N (ed), November 29--December 02, 2001, pp.289--296.
|
[44] |
} http://peer.berkeley.edu/nga/flatfile.html
|
[45] |
} http://www.schoolsobservatory.org
|
[1] | WANG wen jun, ZHONG Cuihao. The Distributed Workflow Management System - Flow Agent[J]. Journal of Computer Science and Technology, 2000, 15(4): 376-382. |
[2] | LUO Junzhou, GU Guanqun, FEI Xiang. An Architectural Model for Intelligent Network Management[J]. Journal of Computer Science and Technology, 2000, 15(2): 136-143. |
[3] | WANG Jian, ZHANG Fuyan. Multicast Address Management and Connection Control Based on Hierarchical Autonomous Structure[J]. Journal of Computer Science and Technology, 1999, 14(1): 64-73. |
[4] | Gu Ning, Lin Zongkai, Guo Yuchai. On Model, Memory Management and Interface in EDBMS/3[J]. Journal of Computer Science and Technology, 1998, 13(4): 337-347. |
[5] | Zhou Longxiang, Qin Jiying. The Catalog Management Strategy of Distributed Data Base Systems[J]. Journal of Computer Science and Technology, 1994, 9(3): 193-203. |
[6] | Pong Man-Chi, Zhang Yongguang, Xu Hong, Ding Jie. OOMMS:A Module Management System Based on an Object-Oriented Model[J]. Journal of Computer Science and Technology, 1993, 8(2): 76-85. |
[7] | Zhang Chenxi, Ci Yungui. Management of Statically Modifiable Prolog Code[J]. Journal of Computer Science and Technology, 1989, 4(4): 323-333. |
[8] | Zhang Fuyan, Cai Shijie, Wang Shu, Ge Ruding. The Human-Computer Dialogue Management of FCAD System[J]. Journal of Computer Science and Technology, 1988, 3(3): 221-227. |
[9] | Tai Juwei, Wang Jue, Chen Xin. A Syntactic-Semantic Approach for Pattern Recognition and Knowledge Representation[J]. Journal of Computer Science and Technology, 1988, 3(3): 161-172. |
[10] | Wang Hanhu. Transaction Management in Distributed Database System POREL[J]. Journal of Computer Science and Technology, 1988, 3(2): 139-146. |